Содержание
В данной статье мы рассмотрим RC генератор и принцип его работы, подробно рассмотрим его схемы, в том числе на операционном усилителе.
Описание и принцип работы
В руководствах по усилителю мы видели, что одноступенчатый транзисторный усилитель может генерировать 180 o фазового сдвига между его выходным и входным сигналами при подключении в конфигурации типа класса А.
Чтобы генератор мог бесконечно выдерживать колебания, должна быть обеспечена достаточная обратная связь правильной фазы, то есть «положительная обратная связь», а транзисторный усилитель используется в качестве инвертирующего каскада для достижения этой цели.
В цепи RC-генератора вход смещен на 180 o через ступень усилителя и на 180 o снова через вторую инвертирующую ступень, что дает нам «180 o + 180 o = 360 o » фазового сдвига, который фактически равен 0 o, тем самым давая нам требуемый положительный отзыв. Другими словами, фазовый сдвиг контура обратной связи должен быть равен «0».
В генераторе сопротивления-емкости или просто в генераторе RC мы используем тот факт, что фазовый сдвиг происходит между входом в сеть RC и выходом из той же сети, например, с использованием элементов RC в ветви обратной связи.
Фазовая цепь RC
Схема слева показывает одну сеть резистор-конденсатор, выходное напряжение которой «опережает» входное напряжение на угол менее 90 o . Идеальная однополюсная RC-цепь будет производить фазовый сдвиг точно на 90 o , а поскольку для колебаний требуется 180 o фазового сдвига, в конструкции RC-генератора необходимо использовать как минимум два однополюсных.
Однако в действительности трудно получить ровно 90 o фазового сдвига, поэтому используется больше стадий. Величина фактического фазового сдвига в цепи зависит от значений резистора и конденсатора, а выбранная частота колебаний с фазовым углом ( Φ ) задается как:
Где: X C — емкостное сопротивление конденсатора, R — сопротивление резистора, а ƒ — частота.
В нашем простом примере выше значения R и C были выбраны таким образом, чтобы на требуемой частоте выходное напряжение опережало входное напряжение под углом около 60 o . Затем фазовый угол между каждым последующим участком RC увеличивается еще на 60 o,, давая разность фаз между входом и выходом 180 o (3 x 60 o ), как показано на следующей векторной диаграмме.
Векторная диаграмма
Затем, соединяя вместе три такие RC-сети последовательно, мы можем произвести полный фазовый сдвиг в цепи 180 o на выбранной частоте, и это образует основы «генератора фазового сдвига», иначе называемого RC-генератором .
Мы знаем, что в схеме усилителя, использующей биполярный транзистор или операционный усилитель, он будет производить сдвиг фазы на 180 o между своим входом и выходом. Если трехступенчатая RC-сеть с фазовым сдвигом подключена между этим входом и выходом усилителя, общий фазовый сдвиг, необходимый для регенеративной обратной связи, составит 3 x 60 o + 180 o = 360 o, как показано ниже.
Три каскада RC каскадно соединены, чтобы получить необходимый наклон для стабильной частоты колебаний. Сдвиг фазы контура обратной связи составляет -180 o, когда фазовый сдвиг каждой ступени составляет -60 o . Это происходит, когда ω = 2πƒ = 1.732 / RC ( tan 60 o = 1.732 ). Затем для достижения требуемого фазового сдвига в цепи генератора RC необходимо использовать несколько RC-фазосдвигающих сетей, таких как схема ниже.
Основная схема генератора RC
Базовый RC генератор, также известный как генератор фазового сдвига, генерирует выходной синусоидальный сигнал, используя регенеративную обратную связь, полученную из комбинации резистор-конденсатор. Эта регенеративная обратная связь от RC- сети обусловлена способностью конденсатора накапливать электрический заряд (аналогично схеме LC-бака).
Эта сеть обратной связи резистор-конденсатор может быть подключена, как показано выше, для создания начального фазового сдвига (сеть с фазовым переходом) или взаимозаменяться для создания запаздывающего фазового сдвига (сеть с фазовым запаздыванием), результат остается тем же, что и синусоидальные колебания, которые возникают только при частота, на которой общий фазовый сдвиг составляет 360 o .
Изменяя один или несколько резисторов или конденсаторов в сети с фазовым сдвигом, можно изменять частоту, и, как правило, это делается путем поддержания одинаковых резисторов и использования 3-х значного переменного конденсатора.
Если все резисторы R и конденсаторы C в сети фазового сдвига равны по величине, то частота колебаний, создаваемых RC-генератором, определяется как:
Где:
ƒ r — выходная частота в герцах
R — сопротивление в омах
C — емкость в Фарадах
N — количество стадий RC, (N = 3)
Поскольку комбинация резистор-конденсатор в цепи RC-генератора также действует как аттенюатор, создавая полное затухание -1 / 29th (Vo / Vi = β) на всех трех ступенях, усиление напряжения усилителя должно быть достаточно высоким, чтобы преодолеть эти потери RC. Следовательно, в нашей трехступенчатой RC-сети, приведенной выше, усиление усилителя тоже должно быть равно или больше 29.
Влияние нагрузки усилителя на сеть обратной связи влияет на частоту колебаний и может привести к тому, что частота генератора будет на 25% выше расчетной. Затем сеть обратной связи должна управляться от выходного источника с высоким импедансом и подаваться на нагрузку с низким импедансом, такую как транзисторный усилитель с общим эмиттером, но лучше использовать операционный усилитель, поскольку он полностью удовлетворяет этим условиям.
Операционный усилитель RC генератора
При использовании в качестве RC-генераторов RC-генераторы с операционным усилителем встречаются чаще, чем их аналоги на биполярных транзисторах. Цепь генератора состоит из операционного усилителя с отрицательным усилением и трехсекционной RC- сети, которая генерирует сдвиг фазы на 180 o . Сеть с фазовым сдвигом подключается от выхода операционного усилителя обратно к его «инвертирующему» входу, как показано ниже.
Поскольку обратная связь подключена к инвертирующему входу, операционный усилитель, следовательно, подключен в своей конфигурации «инвертирующего усилителя», которая создает требуемый сдвиг фазы на 180 o, тогда как сеть RC производит другой сдвиг фазы на 180 o на требуемой частоте (180 o + 180 о ).
Хотя возможно обеспечить каскадное соединение только двух однополюсных RC-каскадов, чтобы обеспечить требуемый сдвиг фазы на 180 o (90 o + 90 o ), стабильность генератора на низких частотах обычно плохая.
Одной из наиболее важных особенностей RC-генератора является его стабильность частоты, которая заключается в его способности обеспечивать выходной синусоидальный сигнал постоянной частоты при различных условиях нагрузки. При каскадном соединении трех или даже четырех каскадов RC (4 x 45 o ) стабильность генератора может быть значительно улучшена.
Обычно используются RC-генераторы с четырьмя каскадами, потому что общедоступные операционные усилители поставляются в четырехслойных интегральных схемах, поэтому проектирование четырехступенчатого генератора с фазовым сдвигом 45 o относительно друг друга относительно легкое.
RC-генераторы стабильны и обеспечивают хорошо сформированный синусоидальный выход с частотой, пропорциональной 1 / RC, и, следовательно, более широкий диапазон частот возможен при использовании переменного конденсатора. Однако RC-генераторы ограничены частотными приложениями из-за ограничений полосы пропускания для получения желаемого сдвига фазы на высоких частотах.
Цепь генератора ОУ
В следующем уроке об Осцилляторах мы рассмотрим другой тип RC-генератора,называемый мостовыми осцилляторами Wien, который использует резисторы и конденсаторы в качестве контура для создания низкочастотного синусоидального сигнала.